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0. Introduction and Overview

In practice, long life items are often subjeeted to larger than normal
stresses (doses) in order to obtain failure data in a short amount of test
time. It is common to test the items at more than one stress level, and
typically, more items are tested at the higher stress levels than those at
the lower stress levels; such tests are known as acceletated or overstiress
life tests. The basic aim is to make ipferences about the life distribution
of the items at the normal stress lev;;s using the failure data from accelerated
tests. :

The current approach to this important problem makes inferences under
parametric assumptions. This may be valid in some situations, and does yield
results which are appealing from a statistical point of view. However, an
engineer or a statistician working under less well-defined conditions may find
this approach too restrictive. For example, it is common to assume that at all
stress levels, failure times are governed by exponential distributions or Weibull
distributions. In addition, a functional relationship between the parameters
of the failure distribution and the applied stress is assumed. Such a relation-
ship is known as an acceleration function or a time transformation function;
examples can be found in Mann, Schafer, and Singpurwalla (Chapter 9, (1974)).

In two recent papers, Phatak, Zimmer, and Williams (1977) and Shaked, Zimmer
and 8all (1977), the distributional assumption is dropped, but the requirement
is retained that the (umknown) failure distribution be of the same form at

the use and at all the accelerated stress levels.




.

Clearly, there are many situations where the above assumptions may not
be appropriate. Of particular concern is the assumption that the failure
distribution is of the same form at all the stress levels. One reason for
this concern is that different stress levels may have different effects on
the mechanisam which causes failure, and thus from a physical point of view,
it may be more realistic to allow for different forms of the failure distri-
bution at the different stress levels.

The approach that we propose in this paper requires neither distributional
assumptions nor the specification of a time transformation function. Rather,
our approach is Bayesian, and is prompted by what is actually dome in practice.
The Bayesian point of view allows us to incorporate some a priori information
which is available in accelerated life tests. We would like this paper to
be construed as meliﬁmy and pragmatic, and thus have not attempted to
give a full theoretical justification. Consequently, we would like to

invite mathematical statisticians to resolve the statistical problems posed. '

1. Preliminaries

As stated before, in accelerated life tests the items are tests under

different stress environments. A stress environment may be characterized
by a single stress such as voltage or temperature, or by multiple stresses,
each of a different type. We denote a stress environment by E, and the
set of all E's by E. We assume that the elements of E may be ordered
according to the magnitude of their severity. Thus, for any two elements
Bi and Ej belonging to E, Bi > Bj denotes the fact that 21 is more

severe than Bj. Let us denote the k accelerated stress environments by




-

EI’EZ""'Ek' and the normal or use conditions stress environment by Eu.
We shall assume that the set E is completely ordered with respect to

the relationship > and that
El > Ez > LN > Ek > Eu.

The basic problem in accelerated life testing is to make inferences
about the life distribution of the item under use environment Eu using
failure data obtained under accelerated stress environments EI’EZ""’ER‘
where k 2 1. In some situations, it is possible to obtain a limited amount
of failure data under the use conditions environment E ; however, in practice,
these situations do not appear to be very common. Although having failure
cata under the use conditions environment Eu has advantages, its absence
is in no way detrimental to our approach. lowever, in order to obtain
results which are useful, it is necessary that k be moderate to large,
and this is what we require. This requirement does not impose any practical
difficulties in many situations of interest, especially those involving
the accelerated life testing of electronic components and in bioassay experi-
ments on animal populations.

In order to introduce some notation, let us denote the failure distri-
bution of the items which are tested under environment Ej by Fj' where
Fj(o') = 0 for all values of j. We assume that Fj is absolutely con-
tinuous and thus fj(x), its probability density function, exists for

x ¢ [0, »). If we denote 1 - Fj(x) by F.(x), then A.(x), the failure

J j

rate of Fj(x). is defined by




}‘j (x) =

"3

f.(x)
b sl F0 > 0.
(

x)

We find it convenient and reasonable to assume that Aj(x) is continuous
in x for xe¢ [0, »). We use the terms failure rate and hazard rate

interchangeably. Since E1 > Ez 2 i P Ek > Eu’ it is logical to assume

that
Xl(x) 2 Az(x) 2 ... 2 Ak(x) 2 Xu(xJ (1.1)

for all x e [0, »).

Using failure data obtained under EI'BZ""’ER' we would like to
obtain estimators ij(x) of Aj(x), j =1,2,...,k, such that for some
0<L<> andall xe [0, L],

. st . st st .
AI(xJ 2 Az(x) & o Ak(x). (1.2)

st
The notatiocn X 2 Y denotes the fact that X is stochastically larger

than Y; i.e.,
P[Xx2x] = P[Y2x] for all values of «x.

In order to obtain estimators of Aj(x), j=1,2,...,k, which satisfy
Equation (1.2), we shall use a Bayesian approach. Under this approach,
Condition (1.1) is incorporated as a prior assumption. Our approach is in

contrast with that of Brunk, Franck, Hanson and liogg (1966), who embody a

similar but weaker condition than (1.1) in their likelihood function.
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Specifically, 3runk et al. assume that the distributions are ordered, i.e.,

Fl(x) 2 Fz(x) B e B Fk(x) vV x.

i The above condition is a consequence of Condition (1.1), but is not equi-
P valent to it. Also, the approach of Brunk et al. is not Bayesian.
We shall first present a methodology for a Bayesian estimation of the

individual hazard rate Aj(x) unconstrained by (1.1).

2. Bayesian Estimation of a Single ilazard Rate Function

For estimating an individual hazard rate Aj(t), we use the following
Bayesian procedure.
f Let Nj(t) be the number of items exposed to the ervironment Ej at
time t. Thus, Nj(O) is the number of items that are initially put on
test in environment E..

J
We hypothesize that the failure times are governed by a time-dependent

Poisson process with the probability of failure in [t, teh] given by

N (t)lj(t)h + o(h),

i

where Aj(t) is the failure rate at time t under environment Ej'

For purposes of analysis, we divide the time interval (o, L] into
intervals of length h > o, where h is chosen to make L a multiple of

h. For convenience, we denote (i-1)h by t,, Nj(ti) by Nj i and

Aj(ti) by Aj,i’ for i=1,2,...,(L/h).
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Let xj i denote the number of failures in [ti' tiOh); if there
’
are no withdrawals, removals, censoring, etc., then Nj,i*l = Nj,i - xj,i'

It is helpful to clarify the above terms by the following diagram:

Number of failures = x

Number survivi N. . 3
er surviving = 1’11
e L ! | 1 | :
] p ] ! i L L ‘
oh-t1 lh-tz 2h-t3 s (1-1)h-ti 1h-ti+1 s [ﬁ] h.t‘k " i
: |

The joint distribution of xj.l'xj,Z""'xj,(L/h)01' is given by the

multivariate distribution

(L/h)+1 xj i
(N, D! n b R /g I (2.1
Iy Thed 5, i
where pj i is the probability of failure of a specified umnit in [ti, t1+1)'
with
(L{h) (L{h)
oamn tr L g SO sn Rt L N

i-1
Denoting pj'il//[E - Lzl Pj’é] by p;,i, Equation (2.1) can be expressed

(Wilks (1962), p. 151, Problem 6.13] as

(L/h) (N, )! X, N, .-x
J’i y J’i - ig Jai jvi
jor O P (T (g9 77 (105 ) '
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*
The pj,i

*
interval [ti, ti+1); that is, pj i is the conditional probability that
’

's can be interpreted as the average failure rate over the

an item which survived to time ty will fail by time tiel” In terms of

the Aj g2 we can write
’

*
Aj,ih = pj,i + o(h).

tquation (2.2) provides us with a starting point for a Bayesian analysis.

2.1. Prior Distributions for p; i

We shall confine the discussion in this section to the jth environmental

condition.
Suppose that the p; i’ i=1,2,...,(L/h), are a priori independent

beta random variables with marginal densities

* r(u- -"‘B. .) * a. -'1 * B- -‘l
& j,i j,i P Sy i,i

It is of interest to note [cf. Lochner (1975)] that the above prior

density leads us to a gemeralized Dirichlet density for the

By = (Py 1+P5 20+ +Py (1/m)+1)

Given the Nj 4's and the X ;'s» the posterior density of
’ L]

* L *
(pj,l'pj,Z""’pj,(L/hD) is

PR ————




(l-p ) J i J i J i

see DeGroot (1970) p. 160.

3. A Bayesian Estimation of Ordered Average Failure Rates.
In a Bayesian context, Condition (1.1) leads us to the requirement that

for every fixed value of i,

* st ,

pj-l,i 2 pj,i for 3§ =02,3, ... k. (3.1)

* *
Thus, our prior distributions on pj_1 i and pj i will have to be
E ’

chosen such that
* * &
p[pj—l,i 2 p] 2 P[Pj,i 2p] forall pz@. (3.2)

One way of achieving Condition (3.2) is to assume that the parameters
* *
of the prior distributions of pj-l i and pj i satisfy the following con-
’ 3

ditions for every fixed value of 1i:

a Sa

j,i j-1,i

and (3.3)

i, i for J & 2.3,:.,K:

* 8

For a proof of the above statement, see Appendix A.

T m = T P ST ——
Sul
R e A74,17, i) e T
jep T(O 17r133,1 §,i7%5,10 1.
(2.3)




e

.

In order to be assured that Condition (3.1) is also satisfied with
respect to the posterior distributions of p;_l i and p; i’ it is suf-
’ >

ficient (see Appendix A) that, for every fixed value of i

uj:i s xjpi : qj'lsi ' xj"lsi
and (3.4)
Bj,i + Nj,i - xj,i 2 Bj-l,i + Nj-l,i - xj-l,i for j = 2,3,...,k.

In order to make our Bayesian analysis more practical, we will have

to reduce the number of prior parameters. One way of doing this is to assume

that

3,4 = a for all values of i and j,

and that (3.5)

Bj,i = Bj for i =1,2,...,(L/h).

Thus, the prior distribution of each p; i’ i=1,2,...,(L/h), is a beta with
parameters o and Bj. This plus Conditions (3.3) and (3.4) lead us to the

following remarks.

The first part of Condition (3.4) will be satisfied whenever xj,i < xj-l,i
for j = 2,3,...,k, That is, the number of failures in the interval [ti’ tiOh)
under environment Ej must not be greater than the number of failures in the
same interval under environment Ej-l' for all values of j. Because Condition

(3.4) will have to be satisfied for every fixed value of i, i = 1,2,...,(L/h),
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a reasonable strategy is to have Nj,l < Nj-l,l

is, we shall put more items on test (initially)under the more severe environ-

for j = 2,3,...,k. That

ment Ej-l' than under the environment Ej.

Since N.

5,i = Nj,i-l - xj,i-l‘ i=1,2,...,(L/h), the second part

of Condition (3.4) can be written ac

B. B. + N

5-1 + Nj-l,i+1 < 3 4 Es] for j = 2,3,...,Kk. (3.6)

An interpretation of the above condition is that, for every fixed value
of i, the number surviving at the start of the (i+1)St interval plus the

prior paramster Bj- for the envircnment Ej- , must be smaller than the

1 1
corresponding sum for the environment Ej‘ Thus, whether the second part of
Condition (3.4) is satic®ied or not, depends not only on the number of failures
in the ith interval and the number surviving, but also on the values of the
PTicT parzmeters . and B. ..
I 5; j-1
interval is a {unction of the severity of the environment and the number on

Since the number of failures in a particular

cest, znd since 8j~1 has to be lecs than or equal to Bj (see Conditions

(2.5) and (3.6)), it is reasonable to have Bj-l < B. whenever Ej <E

j j-v
il.at is, the values of the prior parameters Bj-l and Bj are indicative of

the relative severity of the envircnmental conditions Ej-l

El > Ez P sax P Ek' we will choose the Bj‘s such that 81 < 82 € soorei € Bk’

and Ej. Since

d the values of the Bj's will be indicative of the severity of the environ-

rantal conditions E p B0 I SYRpR. N

jl
if the prior parameters Bj” j=1,2,...,k, and the data from the
accelerated life test, X5 and Nj i’ i=1,2,...,(L/h), are such that
-’ »




]

Condition (3.4) is satisfied for every fixed value of i, then the stochastic
ordering Condition (3.1) will be automatically satisfied with respect to

the posterior distribution of (p; l,p; 2,...,p; (L/h))' If the above is

not the case, then we will have to pool the adjacent violators using the

pooling procedure described in the next section.

4.0, The Pooling of Adjacent Violators.

The procedure for pooling adjacent violators described here is commonly
used in teotonic regression; see Barlow, Bartholomew, Bremner and Brunk (1972).
The pooling is between the violators of the assumed ordering; that is, whenever

xj-l,i < xj,i’ then xj-l,i and xj,i are pooled.

Consider the time interval [(i-1)h,ih); by Condition (3.4) we require

xl’i 2 xz,i Z soe 2 xj-l = xj,i € e B xk‘i

and
31 + Nl,i - xl.i < 32 + N2,i - xZ,i AR Bj-l + Nj-l,i - xj-l.i
< Bj + Nj,i - xj,i € i S Bk + Nk,i - xk,i'
If the reversal occurs, that is, if either
X1, ° 5,1
or if
Byl * Myo1,8 " 1,8 T Byt Ny 4 - % o

then we pool the violators and replace them as shown below.




112 -
Replace both xj-l,i and x by 2{ 5.1, i ) and
By * Myt " N W B "j.i L
1
3By Byt Nyt W R B
We now test to see if the new sequence is properly ordered, i.e.,
1
2Hmat gl t i e '(x'li"‘j g 2
xj+l.i 2 LRCIE ; ﬁ’i’
and
1
Bl + lill'1 - xl,i £ i S 2-(31'_1 + Bj + Nj-l,i + Nj,i - xj-l,i - xj,i)

1
- I(Bj-l + aj + Nj.l.i + Nj,i - xj~1’1 o xj,i) < e < Bk + Nk,i = xk’i-

If a reversal exists in either of the new sequences, then we replace again

by appropriate averages. Thus, if

1
7(%5.1,1* "j ‘(" 1,4 * 5. CNas
or if

1
2085 * B N N T Nt %L 2 B5e t Ny T KL e

then we replace each one of the three by the corresponding average

1
500,10 * 55,1 % Kjer,d)




(in the first sequence) and

1
Ty By B Ny N N %o, " %5,1 7 Xe1,8)

(in the second sequence).

We continue the above procedure until all reversals in the interval
[(i-1)h, ih) are eliminated. We use this pooling scheme for each of the
(L/h) time intervals to achieve the desired ordering.

4.1. Some General Comments Regarding the Pooliﬂg Procedure

The following comments regarding the pooling of adjacent violators will
be helpful.
1. An excessive amount of pooling occurs if the relationship specified
by Condition (1.1) is incorrect, or if the environmental conditions El,Bz....,Ek
are too similar to each other.
2. If Aj(o’) =0 for j =1,2,...,k, then it is reasonable to expect
that some pooling will be necessary at the lower values of i, i = 1,2,...,(L/h).
For many practical situations, it is reasonable to assume that the failure

distributions F j = 1,2,...,k,u, have increasing failure rate (see Barlow

j’
and Proschan (1975)). If we wish to make such an assumption, and incorporate

it into our analysis, then, for each value of j, we must have in addition to

Condition (3.1),

A S

j,i-1 i,i’
or that

st
2 p;’i, ie1,2,...,(L/M).

&
Py,i-1




il

The above condition will further complicate our pooling procedure; we

shall therefore not assume that the Fj are increasing failure rate.

5. The Posterior Distributions of the p; i's.
2

It is apparent from the discussion in Sections 3 and 4 that the posterior
distributions of the p; i's depend on the outcome of our pooling procedure.
»
The posterior analysis is straightforward if no pooling is necessary, for

then, the posterior distribution of (p; l,p; 2,...,p; (L/M) ’1) is simply

r

(L/h) (0’8 ’N 1) w a+x -l - 8 0" - ‘l
_(__mg__ﬁ;_____’_ PRI 373,179,4
jor T axy, 10 BNy 17,4 (Py, 1) (1-p5,1)

for j =1,2,...,k.

Under the assumption of a squared error loss function, a Bayes estimator
of P;,i’ i=1,2,...,(L/h), j =1,2,...,k, is simply the posterior mean;
that is

a+x
h. i
(see DeGroot (1970) p. 40).

If pooling is necessary, then some or all of the "j i" and the

(B,#N, .)'s will be replaced by their appropriately pooled averages. In
j i

any case, the general expression for ;; i will be of the form given above.
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6. A Model for Extrapolations to Use Conditions Stress.

OQur analysis leads us to an array of Bayes estimators of the average
failure rates over intervals of length h, for each environmental condition.
Because of our pooling strategy, the Bayes estimators will be correctly

ordered. That is, for each fixed value of i,

~w ad
Pl,izpz,iz Zpk.i. (6.1)

Given the f,j' 'S 3= 1,2,k and i=1,2,...,(L/h), our goal is
»
to predict p; l,p; 2,...,p; (L/h)* the average failure rates over the time
t] ] »

intervals [(i-1)h,ih), i = 1,2,...,(L/h), respectively, under the use
conditions environment E, .

In the absence of any knowledge about a relationship between the average
failure rates and the values of the various stresses which constitute an
environment, some form of an assumption is essential. This is particularly
crucial if k, the number of distinct environmental conditions of interest,
is small. If, however, k is large, then a relationship between the average
failure rates and the stresses can be empirically obtained; this is what is
often done in practice.

When k is small, we shall postulate the following simple but reasonable
relationship between the average failure rate estimates.

Por some k wmknown constants WgsWpseeesWy 10 WE assume that for each

value of i, i =1,2,...,(L/h),

~t ~w an
pk,i = '0 & 'lpk-l.i + wzpk_z.i P 3 ‘k-lpl.i' (6.2)
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The above relationship states that the average failure rate over a
particular time interval under the environmental condition !-:k is a weighted
sum of the average failure rates over the same time interval under the condi-
tions Bk-l'E'k-Z""’Bl' This is reminiscent of an autoregressive process
of order k-1 which has found useful applications in forecasting (see Box
and Jenkins (1975)).

In order to make the above relationship more meaningful we shall require

that the environmental conditions Ek < F‘k-l € sae € Ez < [-:1 increase in

magnitude of severity by the same fixed amount. For example, if E i represents
a single stress, say a voltage stress Vj, then we shall require that vj_l - Vj = C,
where C is some suitable constant, j = 1,2,...,k.
Since Equation (6.2) holds for i = 1,2,...,(L/h), the least squares
estimators of WosWyseeesWy ) can be obtained in a routine manner. These

estimators are denoted by uo,wl, ceesWy 1t
If the increase in the magnitude of the severity of the environment from

Bu to F‘k is the same as that from Ej to Ej-l’ j =2,3,...,k, then an

estimator of the average failure rate under E . is given by

at - -~ an aw

Py, s " Y0 *"1Px,q * o0 * %1,1P2,4 (6.3)

e (th) =
for i = l.2,...,(l./h), and Pu (L/h)"l =] - 1 pu i’
] i. ’

If the increase in magnitude of the severity of the environment from Eu

to Bk is two times that from Ej to Ej-l’ j = 2,3,...,k, then we iterate
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upon Equation (6.3) one more time to obtain the desired result. Thus, in
principle, we can iterate upon Equation (6.3) as many times as is necessary,

depending upon the separation between E, and E,.
By the definition of p_ ., the probsbility of an item surviving to time

t' (assumed a multiple of h) under environment Eu is

th

L
R = 1 (ep, .

i

Thus, we have the following as an estimator of 'i-"u(t'):

¥ o t*/h .,

(t ) = I (1“9 )o

u i=1 u,i
where the ;; § are given by (6.3).

The properties of this estimator have not been studied. The estimation

procedure has been proposed as a practical method for providing answers in

the difficult area of accelerated testing.
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APPENDIX A.

In this appendix we determine sufficient conditions under which two beta
random variables are stochastically ordered. The results may already be known;
however, they are included for completeness.

The notation and terminology are taken from Barlow and Proschan (1975).

a-1_-x
We first note that a gamma density f(x, a) = ’—‘-—I.-(:-T— is 'I'P2 in
® qg-1
(x, a). Therefore, F(x, a) = f%ﬁe'xdx is TP2 in (x, a) since
X

F(x, o) = [ £(y, a)H(x, y)dy, where H(x, y) =1 for y = x and H(x, y) =0

H(x;, y,) H(x;, ¥,)

y < x. (Note that 2 0 for X <X Yy <Yy Thus,

H(x,, ¥)) H(x;, ¥;)
H(x, y) is TP2, and so the composition of f, H is TPZ')

Since F(x, a) is TP,, then for x, < Xx,, a; <a,,

F(x,, a,) F(x,, a,) 1 1
xl 1 1 %2 2 0. Choose xluo. Then 20

'F(xzn “1) T’.(Xz, az) ?[X, “1) F[X, “2)

for 0<x<w=, a <a, Thus, F(x, ay) 2 F(x, ) for a <a, and x>0.
We have shown:
1. Lemma. Let )(‘l be a gamma r.v. with shape parameter a. Then xu

is increasing stochastically in a.

a.-1
- i
3 Y -y
2. Proposition. Let Y“i have density m—i)-e , 1=1,2, and Y“l’
Ya
a 1
Y, be independent. Then X, e o 2 has beta density

2 12 a a

1 2
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l‘(clmz) ol-l az-l
f(“l"'z”‘) - m x (1-x) for 0s x< 1. (Hogg and Craig, 1970,

p. 134).
3. Theorem. Let x"x-“z have beta density f(cl.az,x). Then x°1’°2
is increasing stochastically in a, and decreasing stochastically in a,.
Y Y
% % '
Proof. Write xa .a = Yy xu ,al = Y——T—r' , where L) < 02.
172 a a 12 o a
1 2 1 2
st st
For fixed Yal. x"x'"z 2 x“l’ G—";' By unconditioning x“l’ o > x“l’ “:." for
a, < ui.
st
'
By similar reasoning, we can show x“l"'z < x"l""z for a, < "1'”

e ot gt A
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